In vitro assessment of the further potential for development of fluoroquinolone resistance in Neisseria meningitidis.
نویسندگان
چکیده
We examined the potential for the development of fluoroquinolone resistance in Neisseria meningitidis by cultivating two clinical isolates of meningococci in the presence of concentrations of ciprofloxacin at and about the predetermined MIC. The quinolone resistance determining regions (QRDRs) of gyrA and parC of 50 stable quinolone-resistant mutants derived in vitro were sequenced and compared with QRDR alterations reported in clinical isolates of quinolone-resistant meningococci and gonococci. MICs to ciprofloxacin and trovafloxacin were determined and sequence changes were correlated with quinolone MICs. Ciprofloxacin and trovafloxacin MICs of the in vitro-derived quinolone-resistant mutants ranged up to 16 mg/liter. Single GyrA alterations were the first change detected and were accompanied by raised MICs, followed by double GyrA changes and still higher MICs. MICs increased further as single ParC substitutions appeared and these were always in the presence of a single or double GyrA change. GyrA changes occurred at positions 91 and 95 with substitutions of Asp-95-->Asn and Thr-91-->Ala and Ile. Changes in the parC QRDR occurred at positions 85, 86, and 91 with four substitutions, Gly-85-->Asp, Asp-86-->Asn, Glu-91-->Gly, and Glu-91-->Lys, detected. The nature of the individual QRDR substitution appeared to influence the level of quinolone resistance expressed, and this varied with the quinolone agent examined. Close similarities occurred between the sequence and nature of QRDR changes in clinical and in vitro-generated quinolone-resistant mutants and with those previously reported for clinical and in vitro-generated quinolone-resistant gonococci. This suggests that quinolone resistance in meningococci may arise in the same manner and reach similar levels in vivo to those seen in quinolone-resistant Neisseria gonorrhoeae.
منابع مشابه
In silico Analysis and Modeling of ACP-MIP–PilQ Chimeric Antigen from Neisseria meningitidis Serogroup B
Background: Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein ...
متن کاملIn silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis
Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...
متن کاملDevelopment of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX
Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers...
متن کاملIn Silico Studies of Outer Membrane of Neisseria Meningitidis PorA: Its Expression and Immunogenic Properties
Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from ser...
متن کاملConstruction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate
Objective(s): The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model.Materials and Methods: Af...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 49 5 شماره
صفحات -
تاریخ انتشار 2005